01 | 数据中台笔记-中台的来源

发布于 2022年 05月 17日 19:30

一、数仓的前世今生

  1. 起源

​ 商业智能(Business Intelligence)诞生在上个世纪 90 年代,它是将企业已有的数据转化为知识,帮助企业做出经营分析决策。这些都离不开大量的数据分析。而数据分析需要聚合多个业务系统的数据,比如需要集成交易系统的数据,需要集成仓储系统的数据等等,同时需要保存历史数据,进行大数据量的范围查询。传统数据库面向单一业务系统,主要实现的是面向事务的增删改查,已经不能满足数据分析的场景,这促使数据仓库概念的出现。

2.建模方法

​ 比尔·恩门 和金博尔(Kimball) 共同开创的数仓建模的设计方法,这个方法对于后来基于数据湖的现代数据仓库的设计有重要的意义,所以你有必要了解。

  • 恩门提出的建模方法自顶向下(这里的顶是指数据的来源,在传统数据仓库中,就是各个业务数据库),基于业务中各个实体以及实体之间的关系,构建数据仓库。

  • 金博尔建模与恩门正好相反,是一种自底向上的模型设计方法,从数据分析的需求出发,拆分维度和事实。(工作开发普遍在用,推荐!!!)

二、Hadoop到数据湖

  1. Hadoop出现

    2003 年开始,互联网巨头谷歌先后发表了 3 篇论文:《The Google File System》《MapReduce:Simplified Data Processing on Large Clusters》《Bigtable:A Distributed Storage System for Structed Data》,这三篇论文奠定了现代大数据的技术基础。

    ​ 但 2005 年 Hadoop 出现的时候,大数据技术才开始普及。你可以把 Hadoop 认为是前面三篇论文的一个开源实现,我认为 Hadoop 相比传统数据仓库主要有两个优势:

    • 完全分布式,易于扩展,可以使用价格低廉的机器堆出一个计算、存储能力很强的集群,满足海量数据的处理要求;

    • 弱化数据格式,数据被集成到 Hadoop 之后,可以不保留任何数据格式,数据模型与数据存储分离,数据在被使用的时候,可以按照不同的模型读取,满足异构数据灵活分析的需求。

  2. 数据湖提出

    数据湖概念的提出,我认为是 Hadoop 从开源技术走向商业化成熟的标志。企业可以基于 Hadoop 构建数据湖,将数据作为一种企业核心资产。

    数据湖拉开了 Hadoop 商用化的大幕,但是一个商用的 Hadoop 包含 20 多种计算引擎, 数据研发涉及流程非常多,技术门槛限制了 Hadoop 的商用化进程。那么如何让数据的加工像工厂一样,直接在设备流水线上完成呢?数据工厂时代:大数据平台兴起

三、数据工厂时代:大数据平台兴起

​ 对于一个数据开发,在完成一项需求时,常见的一个流程是首先要把数据导入到大数据平台中,然后按照需求进行数据开发。开发完成以后要进行数据验证比对,确认是否符合预期。接下来是把数据发布上线,提交调度。最后是日常的任务运维,确保任务每日能够正常产出数据。

​ 提出大数据平台的概念,就是为了提高数据研发的效率,降低数据研发的门槛,让数据能够在一个设备流水线上快速地完成加工。

大数据平台是面向数据研发场景的,覆盖数据研发的完整链路的数据工作台

Hive、Spark、Flink、Impala 提供了大数据计算引擎:

  • Hive、Spark 主要解决离线数据清洗、加工的场景,目前,Spark 用得越来越多,性能要比 Hive 高不少;
  • Flink 主要是解决实时计算的场景;
  • Impala 主要是解决交互式查询的场景。

四、数据中台崛起

​ 时间到了 2016 年前后,互联网高速发展,背后对数据的需求越来越多,数据的应用场景也越来越多,有大量的数据产品进入到了我们运营的日常工作,成为运营工作中不可或缺的一部分。在电商业务中,有供应链系统,供应链系统会根据各个商品的毛利、库存、销售数据以及商品的舆情,产生商品的补货决策,然后推送给采购系统。

大规模数据的应用,也逐渐暴露出现一些问题。

业务发展前期,为了快速实现业务的需求,烟囱式的开发导致企业不同业务线,甚至相同业务线的不同应用之间,数据都是割裂的。两个数据应用的相同指标,展示的结果不一致,导致运营对数据的信任度下降。如果你是运营,当你想看一下商品的销售额,发现两个报表上,都叫销售额的指标出现了两个值,你的感受如何? 你第一反应肯定是数据算错了,你不敢继续使用这个数据了。

  • 如果你是运营,当你想要一个数据的时候,开发告诉你至少需要一周,你肯定想是不是太慢了,能不能再快一点儿?

  • 如果你是数据开发,当面对大量的需求的时候,你肯定是在抱怨,需求太多,人太少,活干不完。

  • 如果你是一个企业的老板,当你看到每个月的账单成指数级增长的时候,你肯定觉得这也太贵了,能不能再省一点,要不吃不消了。

    这些问题的根源在于,数据无法共享。2016 年,阿里巴巴率先提出了“数据中台”的口号。数据中台的核心,是避免数据的重复计算,通过数据服务化,提高数据的共享能力,赋能数据应用

郭老师原文地址:https://time.geekbang.org/column/intro/100049101

推荐文章